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Introduction to Finite Frames

One of the important concepts in the study of vector spaces is the concept
of a basis for the vector space, which allows every vector to be uniquely
represented as a linear combination of the basis elements.

However, the linear independence property for a basis is restrictive;
sometimes it is impossible to find vectors which both fulfill the basis
requirements and also satisfy external conditions (for example,
orthonormal basis condition, Parseval’s identity and so on) demanded by
applied problems. For such purposes, we need to look for more flexible
types of spanning sets. Frames provide these alternatives.

In this lecture, we discuss frames in Rn, giving a nonstandard but
equivalent definition of a frame. We use this as a first definition in hopes
that it lends some intuition about frames that carry over into the more
general setting.

We then proceed to give the standard definition of a frame in a finite
dimensional Hilbert space.
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Introduction to Finite Frames

We begin our discussion of frames by restricting ourselves to real
Euclidean space Rn with the inner product 〈x , y〉 = y∗x . The definition we
give for a frame in this setting differs from, but is equivalent to, the
definition of a more general frame.

Definition 1.

Let k ≥ n and let {v1, v2, . . . , vk} be a finite sequence of vectors in Rn.
We say that the sequence {v1, v2, . . . , vk} has an extension to a basis
for Rk if there exist vectors {w1,w2, . . . ,wk} in Rk−n such that{[

v1

w1

]
,

[
v2

w2

]
, . . . ,

[
vk
wk

]}
is a basis for Rk .
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Rn-Frames

Definition 2.

An Rn-frame is a finite sequence of vectors F = {v1, v2, . . . , vk} in Rn,
with k ≥ n, such that there exists an extension of F to a basis for Rk .

It is clear from the definition that the Rn-frames having exactly n elements
(so k = n) are precisely the bases for Rn.

Lemma 3.

A collection of vectors in Rn is an Rn-frame if and only if it is a spanning
set for Rn.
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Rn-Frames

Definition 4.

A finite sequence of vectors {v1, v2, . . . , vk} in Rn is called a Parseval
sequence if it satisfies an identity like Parseval’s identity. Specifically, for
every x ∈ Rn,

‖x‖2 =
k∑

i=1

|〈x , vi 〉|2.

1. Orthonormal bases for Rn are naturally examples of Parseval
sequences, since they satisfy Parseval’s identity, but there are other
examples as well.

2. Notice that for a sequence to be a Parseval sequence for Rn, it must
have at least n elements.

Proposition 5.

Every Parseval sequence for Rn is necessarily an Rn-frame.
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Rn-Frames

We will henceforth call such sequences Parseval frames rather than
Parseval sequences.

Lemma 6.

A Parseval frame {v1, v2, . . . , vk} for Rn has an extension to an
orthonormal basis of Rk .

The following is an immediate consequence of the above Lemma.

Lemma 7.

A finite sequence of vectors {v1, v2, . . . , vk} in Rn is a Parseval sequence if
and only if the rows of the matrix

V =
[
v1 v2 · · · vk

]
are orthonormal vectors in Rk .
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Rn-Frames

Consider the following example in R2.

Example 8.

Let H = R2, and let {x1, x2, x3} be the vectors{√
2
3

[
1
0

]
,
√

2
3

[
−1

2√
3

2

]
,
√

2
3

[
−1

2

−
√

3
2

]}
.

This collection of vectors is neither linearly independent nor an
orthonormal set, but it shares some properties, including Parseval’s
identity, with an orthonormal basis.
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Parseval Frames

Let H be a Hilbert space with finite dimension n. Our primary examples of
such spaces will be the Euclidean spaces Rn and Cn.

Definition 9.

A sequence of vectors {xi}ki=1 ⊂ H is called a Parseval frame for H if for
every x ∈ H:

‖x‖2 =
k∑

i=1

|〈x , xi 〉|2. (1)

Parseval frames are so named because Equation (1) looks like Parseval’s
identity for orthonormal bases. As we observed, every orthonormal basis is
a Parseval frame but there do exist Parseval frames which are not
orthonormal bases.
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Rn-Frames

Equation (1) gives the definition of a Parseval frame, but it turns out we
could also have used, as the defining property, the fact that every vector x
can be reconstructed using the inner products 〈x , xi 〉 for coefficients. We
now prove that the two notions are equivalent.

Proposition 10.

A collection of vectors {xi}ki=1 is a Parseval frame for a Hilbert space H if
and only if the following formula holds for every x in H:

x =
k∑

i=1

〈x , xi 〉xi . (2)

Equation (2) is called the reconstruction formula for a Parseval frame.
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Rn-Frames

Let Θ be the linear operator from H to Ck given by

Θx =


〈x , x1〉
〈x , x2〉

...
〈x , xk〉

 =
k∑

i=1

〈x , xi 〉ei ,

where {ei}ki=1 is the standard orthonormal basis for Ck .

This operator, called the analysis operator.
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Rn-Frames

Remark 11.

1. If {xi}ki=1 is a Parseval frame, we can deduce that ‖xi‖ ≤ 1 for each i .

2. Let {xi}ki=1 be a Parseval frame. If xi 6= 0, then ‖xi‖ = 1 if and only
if xi is orthogonal to each xj when j 6= i .

These two remarks yield the following observation, which illustrates an
important difference between an orthonormal basis and a general Parseval
frame.

Proposition 12.

Let {xi}ki=1 be a Parseval frame for a Hilbert space H.Then it is an
orthonormal basis if and only if each xi is a unit vector.
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Rn-Frames

We also have the following formula on the dimension of the Hilbert space
H.

Proposition 13.

Let H be a finite-dimensional Hilbert space. If {xi}ki=1 is a Parseval frame
for H, then

dimH =
k∑

i=1

‖xi‖2.

From the above result, we also have a new formula for the trace of a linear
operator using a Parseval frame.

Corollary 14 (Trace Formula).

Let {xi}ki=1 be a Parseval frame for H, and let A be a linear operator on

H. Then tr(A) =
∑k

i=1〈Axi , xi 〉.
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General Frames and the Canonical Reconstruction Formula.

Parseval frames are a special example of sets of vectors called frames. We
introduced them first to emphasize the similarity with orthonormal bases.
Frames, too, are related to bases, but they are more general than the
Parseval frames. The following definition is the general frame analog of
Definition 9.

Definition 15.

A frame for a Hilbert space H is a sequence of vectors {xi} ⊂ H for
which there exist constants 0 < A ≤ B <∞ such that, for every x ∈ H,

A‖x‖2 ≤
∑
i

|〈x , xi 〉|2 ≤ B‖x‖2. (3)

The sum in Equation (3) will be considered to be a finite sum, since we are
considering in the lecture finite frames for finite-dimensional Hilbert spaces.

P. Sam Johnson Finite Frames 13/63



General Frames and the Canonical Reconstruction Formula.

We introduced frames for Rn and discovered that they are exactly the
spanning sets of Rn. The same result holds for general finite-dimensional
Hilbert spaces.

Proposition 16.

Suppose that H is a finite-dimensional Hilbert space and {xi}ki=1 is a finite
collection of vectors from H. Then the following are equivalent:

(i) {xi}ki=1 is a frame for H.
(ii) span {xi}ki=1 = H.

The hypothesis that “the Hilbert space is finite-dimensional” cannot
be dropped. The statement is not valid in infinite dimensions.
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General Frames and the Canonical Reconstruction Formula.

For general frames, we can also work out a reconstruction formula which
resembles the reconstruction formula (2) for Parseval frames.

Proposition 17.

Let {xi}ki=1 be a frame for H. Then there exists a frame {yi}ki=1 such that
every x ∈ H can be reconstructed with the formaula.

x =
k∑

i=1

〈x , yi 〉xi =
k∑

i=1

〈x , xi 〉yi . (4)

Such a frame {yi}ki=1 is called a dual frame to {xi}ki=1.
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General Frames and the Canonical Reconstruction Formula.

Let Θ be the linear map from H to Ck defined by:

Θx =


〈x , x1〉
〈x , x2〉

...
〈x , xk〉


We show that Θ is injective (one-to-one) by showing that the kernel is
{0}. Let Θx = 0, which gives 〈x , xi 〉 = 0 for i = 1, 2, . . . , k. Since {xi}ki=1

is a spanning set for H, we can conclude that x = 0. Hence Θ is a
bijection onto its range.

If we let Θ∗ be the adjoint matrix of Θ, we may also conclude that the
operator S = Θ∗Θ : H → H is invertible.

We call S the frame operator for the collection {xi}ki=1.
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Notation

As a remark on the notation here, notice that although we are using set or
sequence notation for frames, neither is exactly the right notion.

For example, we need the vector e1 to be in the collection twice in order
for {e1, e2, e1,−e2} to be a tight frame. To allow for repeated vectors,
frames are often regarded as finite sequences rather than sets.

But the sequence notation is also an imperfect model, since the ordering it
imposes would require us to regard a rearrangement of the same set of
vectors as a different frame.

We will generally use the word collection of vectors, by which we mean to
consider rearrangements to be equivalent but to allow elements to appear
more than once.
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General Frames and the Canonical Reconstruction Formula.

In a finite-dimensional Hilbert space, a sequence of vectors is a spanning
set if and only if it is a frame. Therefore, it is clear that if H has
dimension n, any frame for H must have at least n vectors.

When a frame has more vectors than the dimension of the Hilbert space,
we say it has an increased redundancy.

Definition 18.

Let H have dimension n and let {xi}ki=1 be a frame for H having k
elements. The redundancy of the frame is the quantity k

n , which must be
greater than or equal to 1.
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General Frames and the Canonical Reconstruction Formula.

The frame in Example 8, then, must have redundancy 3
2 . The redundancy

of a frame gives a way to describe the size of the frame in comparison to
the vector space it spans. In an application where the representation of a
signal or image might be subjected to noise or erasures, redundancy helps
to reduce the losses and errors that can occur.

Think of a vector x in H as a sentence spoken into a cell phone. The
voice message is broken down into a series of coefficients which are
digitized, transmitted, and read by a receiver which knows how to
transform the coefficients back into an audible sentence.

During the transmission, however, some of those coefficients may be
scrambled up or erased. If there were some extra coefficients used, we
have a better chance of understanding the message on the other end, even
if it is not perfectly identical to the message that was sent.
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General Frames and the Canonical Reconstruction Formula.

Another advantage to redundancy is the variety of frames that exist.
Frames are used in a wide variety of applications, each having unique
constraints. Orthonormal bases are very restrictive. The elements in an
orthonormal basis must all be orthogonal, there can only be exactly as
many elements as the dimension of the space, and they must all have unit
norm.

Frames can be structured to adjust the weight on each component by
having vectors with varying norms. Frames exist which pay special
attention to some parts of a signal by grouping more vectors in these
areas. This is accomplished by constructing a frame with varied spacing
(measured by the inner products) between vectors.
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General Frames and the Canonical Reconstruction Formula.

The property that is present in orthonormal bases and lost for frames with
redundancy greater than 1 is the uniqueness of the coefficients. In certain
applications, however, uniqueness may be less important than the benefits
from redundancy and variety of structures.

In an infinite-dimensional space, the analog of a spanning set is a complete
sequence, and it turns out to be untrue that every complete sequence is a
frame. There is a rich theory of frames in infinite dimensions.
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Frames and Matrices

The map Θ was introduced which led to the reconstruction formula in
Equation (4). We now see a more detailed investigation of this operator.
For convenience we always assume that every vector x ∈ H has a vector
form with respect to a fixed basis {u1, u2, . . . , un} of H.

Definition 19.

Let {xi}ki=1 ⊂ H. The matrix (operator) Θ : H → Ck defined by

Θx =

〈x , x1〉
...

〈x , xk〉

 =
k∑

i=1

〈x , xi 〉ei

is called the analysis matrix (or operator) of {xi}ki=1, where {ei}ki=1 is
the standard orthonormal basis for Ck .
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Analysis operator

We now give a more detailed investigation of the analysis operator.

Definition 20.

The adjoint Θ∗ of the analysis operator, which will map Ck to H, is called
the synthesis operator. The operator S = Θ∗Θ : H → H is called the
frame operator.

We can prove that S is a positive self-adjoint operator. Note that we can
define these operators for any sequence of vectors {xi}ki=1 from H,
although {xi}ki=1 may not be a frame.

The definition of a Parseval frame and Proposition 10 combine to prove
that the frame operator is exactly the identity operator for H; i.e., Sx = x ,
for all x ∈ H, if and only if {xi}ki=1 is a Parseval frame for H. It is an
immediate corollary that {xi}ki=1 is a tight frame if and only if the frame
operator for {xi}ki=1 is a scalar multiple of the identity operator.
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Analysis operator

Recall the handy equation from Proposition 17, using the norm in Ck :

‖Tx‖2 =
k∑

i=1

|〈x , xi 〉|2. (5)

This will lead us to the following equivalent ways to describe a frame for a
finite-dimensional Hilbert space.

Lemma 21.

Let H be a Hilbert space and let {xi}ki=1 ⊂ H. Let Θ be the analysis
operator for {xi}ki=1. Then the following are equivalent:

(i) {xi}ki=1 is a frame for H.
(ii) Θ is a one to-one operator from H to Ck .

(iii) The frame operator S = Θ∗Θ is an invertible operator on H.

Moreover, if {xi}ki=1 is a frame for H, then A = 1
‖Θ−1‖2 and B = ‖Θ‖2 are

frame bounds, where Θ−1 : Θ(H)→ H is the inverse of Θ.
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Analysis operator

Now we view Θ as a k × n matrix with respect to the standard orthonormal
basis {ei}ki=1 for Ck and a fixed orthonormal basis {u1, u2, . . . , un} for H.
Write Θ = [Θij ]k×n.

Then we have

Θij = 〈Θuj , ei 〉 = 〈uj ,Θ∗ei 〉 = 〈uj , xi 〉 = 〈xi , uj〉.

The rows of the matrix Θ are x∗i = x̄Ti if we view each vector xi as a
column vector in H:

Θ =


← x∗1 →
← x∗2 →

...
← x∗k →

 .
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Analysis operator

Similarly, the synthesis operator Θ∗ is an n × k matrix with the vectors xi
as its columns:

Θ∗ =

 ↑ ↑ ↑
x1 x2 . . . xk
↓ ↓ ↓

 .
Using the matrix representations of the analysis and synthesis operators,
we find the following properties:

Proposition 22.

Let T = [x1 x2 . . . xk ] be an n × k matrix with xi being the column
vectors of T .

(i) {x1, x2, dots, xk} is a frame for Cn if and only if T has rank n.

(ii) {x1, x2, . . . , xk} is a tight frame for Cn if and only if the set of row
vectors of T is a pairwise orthogonal collection of vectors all having
the same norm. In particular, {xi}ki=1 is a Parseval frame for Cn if
and only if the set of row vectors of T is an orthonormal set.
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Frames and Matrices

Motivated by the above result, we give the following definitions:

Definition 23.

A matrix T of size n × k is called a frame matrix if it has rank n. T is
called a Parseval frame matrix if TT ∗ = In×n. It is called a tight frame
matrix if TT ∗ = λIn×n for some λ > 0. If T is a tight frame matrix and,
in addition, all of the columns of T have the same norm, then T is called
an equi-norm tight frame matrix.

Proposition 24.

Let T = [x1 x2 . . . xk ] be an n × k matrix and let λmin and λmax

respectively be the minimal and maximal eigenvalues of TT ∗. Then
following are equivalent :

(i) λmin > 0 ; (ii) {xi}ki=1 is a frame for Cn.

Moreover, when the above statements hold, the optimal lower and upper
frame bounds for {xi}ki=1 are λmin and λmax , respectively.
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Frames and Matrices

If {xi}ki=1 is a frame with optimal frame bounds A and B, then

B

A
=
λmax

λmin
= c(S)

is the condition number of the frame operator S , which is an important
quantity in the numerical computation of S−1, and will be discussed later
in more detail.

Given the analysis operator Θ for a sequence {xi}ki=1, we have been
describing the importance of the frame operatorS = Θ∗Θ.

Composing the analysis and synthesis operators in the other order
G = ΘΘ∗ gives an operator called the Grammian operator on the Hilbert
space Ck . The Grammian also plays an important role in frame theory.
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Frames and Matrices

The entries of the Grammian matrix are the inner products between the
frame elements:

G = ΘΘ∗ =


〈x1, x1〉 〈x2, x1〉 . . . 〈xk , x1〉
〈x1, x2〉 〈x2, x2〉 . . . 〈xk , x2〉

...
...

. . .
...

〈x1, xk〉 〈x2, xk〉 . . . 〈xk , xk〉

 .

The diagonal entries of the Grammian are ‖xi‖2, i = 1, 2, . . . , k, the
squares of the norms of the frame elements.

Proposition 25.

A collection of vectors {xi}ki=1 ⊂ H, where H is a Hilbert space of
dimension n, is a Parseval frame for H if and only if the associated
Grammian operator G is an orthogonal projection of rank n.
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Similarity and Unitary Equivalence of Frames

There are several commonly used notions of equivalence among frames. In
other words, there are frames which, although they are technically
different, are considered to be the “same”. Below are some natural
notions of equivalent frames in Rn.

1. Frames which contain the same vectors, but given in a different order.

2. Frames which only differ in that some of the vectors xi have been
replaced with the additive inverse −xi .

3. Frames which are rotations of each other, in the sense that a fixed
rotation is applied to each vector of one frame to create the other
frame.
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Similarity and Unitary Equivalence of Frames

Lemma 26.

Let H and K be Hilbert spaces. Given {xi}ki=1 ⊂ H and T any invertible
(bijective) operator from H to K, {xi}ki=1 is a frame for H if and only if
{Txi}ki=1 is a frame for K.

This lemma motivates our definition of two types of equivalence of frames:

Definition 27.

Two frames {xi}ki=1 and {yi}ki=1 for Hilbert spaces H and K respectively
are said to be similar if there exists an invertible operator T : H → K
such that Txi = yi for i = 1, 2, . . . , k . The frames are called unitarily
equivalent if we require T to be a unitary operator from H to K.

We remark that similarity is an equivalence relation which is order
dependent. For example, if {ei}ni=1 is an orthonormal basis for H, then
{0, e1, . . . , en} and {e1, 0, e2, . . . , en} are two nonsimilar frames, although
they are the same set.
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Similarity and Unitary Equivalence of Frames

The following result tells us the rather interesting fact that every frame is
similar to a Parseval frame.

Proposition 28.

Let {xi}ki=1 be a frame for H with frame operator S . Then {S−
1
2 xi}ki=1 is

a Parseval frame for H.

It is possible, though, for a frame to be similar to more than one Parseval
frame. The following lemma describes similarity between two different
Parseval frames.

Lemma 29.

If two Parseval frames are similar, then they must also be unitarily
equivalent.
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Similarity and Unitary Equivalence of Frames

We point out that if a frame {xi}ki=1 is unitarily equivalent to a Parseval
frame, then {xi}ki=1 is also a Parseval frame. The next result gives us a
characterization of similar frames:

Theorem 30.

Let {xi}ki=1 and {yi}ki=1 be two frames for H and K, respectively. Then
they are similar if and only if their analysis operators have the same range.

Corollary 31.

A frame {xi}ki=1 for a finite-dimensional Hilbert space H is also a basis if
and only if the range of its analysis operator is the whole space Ck .
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Similarity and Unitary Equivalence of Frames

Theorem 30 induces a classification of all the frames having k vectors,
according to the range of their analysis operators.

Corollary 32.

Let J = {1, 2, . . . , k}. Then the set of the equivalence classes (by
similarity) of all the frames indexed by J is in one-to-one correspondence
with the set of all subspaces of Ck .
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Numerical Algorithms

Let {xi}ki=1 be a frame for a Hilbert space H with frame operator S .
Suppose that the frame coefficients {〈x , xi 〉}ki=1 are known. We want to
reconstruct x by using these coefficients and the frame vectors {xi}ki=1.
Recall that we can do this by computing the canonical dual frame
{S−1xi}ki=1 and using the reconstruction formula

x =
k∑

i=1

〈x , xi 〉S−1xi .

In order to do this, however, we need to invert the frame operator S . The
speed of convergence in the numerical procedure of finding S−1 depends
heavily on the condition number of S . (Recall that the condition number
is the ratio between the optimal upper frame bound and the optimal lower
frame bound.) Therefore, inverting the frame operator by computer could
be unacceptably time consuming if the dimension of H and the condition
number are large.
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Numerical Algorithms

An alternative to exactly reconstructing x is to use an algorithm which will
produce increasingly accurate approximations of x ∈ H using the frame
vectors and coefficients.

We now see three algorithms: the frame algorithm, the Chebyshev
algorithm, and the conjugate gradient algorithm.

The frame algorithm is the simplest. However, the other two were showed
by Grochenig to provide faster convergence when the condition number of
S is very large.
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The frame algorithm

Let {xi}ni=1 be a frame for H with frame bounds A and B. Given x ∈ H,
we describe the following recursive algorithm:

u0 = 0,

uk = uk−1 +
2

A + B
S(x − uk−1), k ≥ 1.

Note that the values

S(x − uk−1) =
n∑

i=1

(〈x , xi 〉+ 〈uk−1, xi 〉)xk

can be easily calculated since {〈x , xi 〉}ni=1 and {xi}ni=1 are already given.
The convergence speed of this algorithm is given by

‖x − ui‖ ≤
(
B − A

A + B

)i

‖x‖.
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The Chebyshev algorithm

Let {xi}ni=1 be a frame for H with frame bounds A and B. Given x ∈ H,
define

ρ =
B − A

B + A
, σ =

√
B −
√
A√

B +
√
A
.

Define the sequence {uk}∞k=0 in H and corresponding numbers {λk}∞k=1 by

u0 = 0, u1 =
2

B + A
Sx , λ1 = 2,

and for k ≥ 2, λk = 1

1− ρ2

4
λk−1

and

uk = λk(uk−1 − uk−2 + 2
B+AS(f − uk−1)) + uk−2.

Then the sequence {uk} converges to x in H, and the speed of
convergence for the Chebyshev algorithm is:

‖x − uk‖ ≤
2σk

1 + σ2k
‖x‖.
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The conjugate gradient algorithm

Unlike the previous two algorithms, the conjugate gradient algorithm works
without the knowledge of the frame bounds (but the speed of convergence
does depend on the frame bounds). Let {xi}ni=1 be a frame for H with
frame bounds A and B. Let x ∈ H be a nonzero vector. Define three
sequences {uk}∞k=0, {rk}∞k=0, and {pk}∞k=1 in H, and corresponding scalars
{λk}∞k=−1 by

u0 = 0, r0 = p0 = Sx , p−1 = 0

and for k ≥ 0,

λk =
〈rk , pk〉
〈pk ,Spk〉

,

uk+1 = uk + λkpk ,

rk+1 = rk − λkSpk ,

pk+1 = Spk −
〈Spk , Spk〉
〈pk ,Spk〉

pk −
〈Spk , Spk−1〉
〈pk−1, Spk−1〉

pk−1.

The sequence uk converges in H to the vector x .
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Exercises

Exercises 33.

1. Let A and B be n × n positive self-adjoint matrices such that for all
x ∈ Cn, x∗Ax = x∗Bx . Prove that A = B. Equivalently, prove that if
A,B are positive operators on H such that 〈Ax , x〉 = 〈Bx , x〉, for all
x ∈ H, then A = B.

2. Prove that if H is a finite-dimensional Hilbert space, then every finite
sequence has an upper frame bound.

3. Prove that if {xi}ki=1 is a tight frame of unit vectors for an
n-dimensional Hilbert space, then the frame bound is A = k

n . More
generally, if {xi}ki=1 is a tight frame for H, then the frame bound is

given by: A = 1
n

∑k
i=1 ‖xi‖2.

4. Verify that the matrix of the Grammian operator is [G ]i ,j = 〈xj , xi 〉.
5. Prove that if {xi}ki=1 is a frame with upper frame bound B, then
‖xi‖2 ≤ B for all i = {1, 2, . . . , k}.
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Exercises

Exercises 34.

1. Let {xi}ki=1 be any sequence of vectors in H with k ≥ n and let S be
the associated frame operator. (Note that a sequence need not be a
frame to form the frame operator.) Let b1 ≤ b2 ≤ · · · ≤ bn be the
eigenvalues of S . If b1 > 0, prove that the sequence is a frame for H
with optimal frame bounds b1 and bn. [Hint: Since S is a positive
operator, the Spectral Theorem implies that there is an orthonormal
basis {ui}ni=1 of eigenvectors of S .]

2. Let {xi}ki=1 be a frame with lower and upper frame bounds A and B
respectively, and let S be the associated frame operator. Prove that
{S−1xi}ki=1 is also a frame with lower frame bound 1

B and upper
frame bound 1

A .
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Exercises

Exercises 35.

1. Let G be the Grammian operator for a frame {xi}ki=1 in Rn. Prove
that G is invertible if and only if k = n.

2. Let H be a finite-dimensional Hilbert space. For A ∈ B(H), the

Hilbert-Schmidt norm of A is defined by ‖A‖2 = [tr(A∗A)]
1
2 .

(i) Prove that ‖ · ‖2 is, in fact, a norm on the vector space B(H).
(ii) Prove that ‖ · ‖2 is submultiplicative, which means that for all

A,B ∈ B(H), ‖AB‖2 ≤ ‖A‖2‖B‖2.
(iii) More generally, for any fixed p, 1 ≤ p ≤ ∞, we can define a norm on

B(H) called the Shatten p-norm, given by ||A‖p = [tr(|A|p)]
1
p . Prove

that ‖ · ‖p is, in fact, a norm on B(H).
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Frames in R2

This chapter develops a geometric description of tight frames in the plane
R2. While this characterization of tight frames does not extend to
higher-dimensional spaces, we can use it to develop some intuition about
the types of tight frames that exist. We will discover some properties of
R2 frames, and these properties will generate a variety of questions, some
still unanswered, about frames in Rn.

A collection of vectors {xi}ki=1, where xi =

[
ai cos θi
ai sin θi

]
, is a tight frame

with frame bound A if and only if the frame operator S is equal to A times
the identity operator. The frame operator for a collection of vectors{[

ai cos θi
ai sin θi

]}k

i=1

in R2 will be the 2× 2 matrix:

S = Θ∗Θ =

[ ∑k
i=1 a

2
i cos2 θi

∑k
i=1 a

2
i cos θi sin θi∑k

i=1 a
2
i cos θi sin θi

∑k
i=1 a

2
i sin2 θi

]
.
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Frames in R2

Using trigonometric double-angle formulas, we see that the frame operator
S is a scalar multiple of the identity operator if and only if the following
vector equation holds:

k∑
i=1

[
a2
i cos 2θi
a2
i sin 2θi

]
=

[
0
0

]
.

This establishes an exact correspondence between tight frames for R2 and
collections of vectors obtained from the tight frame vectors by squaring
the length and doubling the angle of each vector; the original collection is
a tight frame exactly when the new collection of vectors sums to zero.

If x =

[
a cos θ
a sin θ

]
is a vector in R2, let x̃ =

[
a2 cos 2θ
a2 sin 2θ

]
be this associated

vector which we will call the diagram vector, because we will be drawing
diagrams in which we discuss the sum of such vectors.
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Frames in R2

Lemma 36.

A collection {xi}ki=1 of vectors in R2, where k ≥ 2, is a tight frame for R2

iff the diagram vectors {x̃i}ki=1 sum to zero in R2.

These vectors form a tight frame for R2.
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Frames in R2

The diagram of the sum of vectors {x̃i}ki=1 provides a visual representation
of the tight frames in R2, and provides very intuitive answers to questions
we may ask about frames.

The diagram vectors here are shown first in standard position, and then
placed tip-to-tail to demonstrate that they sum to zero.
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Frames in R2

One example of a unit tight frame with three vectors in R2 can be formed
by rescaling the vectors from Example 8 to unit vectors :{[

1
0

]
,

[
−1

2√
3

2

]
,

[
−1

2

−
√

3
2

]}
.

These vectors and their diagram vectors are shown in the following figure,
and we see that indeed the diagram vectors sum to zero.

If we want to consider all the unit tight frames having

three vectors, we can consider the possible diagrams

of unit vectors which can sum to zero. Since we are

restricted to unit vectors in this case, we realize that

the only possible diagrams will be equilateral triangles,

which fixes the angles between the diagram vectors

(see the Figure).
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Equivalence of Frames

Suppose that a collection of vectors {xi}ki=1 is a frame or a tight frame.
There are certain other collections which we would consider to be in some
sense the same frame.

Here is the unit frame of three vectors given by scaling the vectors in
Example 8, followed by the associated diagram vectors. In this special
example, the set of diagram vectors is simply a rearrangement of the
original set of vectors. Observe that the diagram vectors sum to zero,

which proves that this frame is a tight frame for R2.
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Equivalence of Frames

We can carefully define an equivalence relation among such frames, so
that we can talk about these frames collectively as a single frame.

We will describe a new equivalence relation in which frames containing the
same vectors in different orders are equivalent. We will also consider
collections for which some vectors xi are replaced with −xi and collections
which are a uniform rotation from the original one to be equivalent to the
original one.

This equivalence we are describing here is not the one most commonly
called frame equivalence, so we will use the term PRR-equivalence
(permutation-reflection-rotation equivalence) to avoid any confusion.

PRR-equivalence will equate two frames which contain the same elements,
only permuted. The order in which the vectors are listed may change the
analysis, synthesis, and frame operators.
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Equivalence of Frames

In the same way, if we replace xi with −xi , we can verify that the frame
bound and frame operator do not change. So the act of replacing a subset
of frame vectors with their additive inverse should not change the frame,
in our description of different frames. If each vector is rotated by a fixed
angle θ, the resulting collection is also a frame, with the same properties
as the original frame.

The three equivalences - permutation, reflection, rotation - are naturally
seen to give rise to diagrams that are also, in some sense, the same. If the
order of the vectors in an R2 frame is altered, the diagram vectors are the
same, but also permuted in order. Because there are a finite number of
diagram vectors, the sum of these diagram vectors is certainly unchanged
by the rearrangement. If the vectors are placed tip-to-tail, the resulting
plane figure will look different, but will begin and end at the same points
as the original figure. If the frame was originally a tight frame, both
diagrams will be closed polygons.
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Equivalence of Frames

If each vector in an R2 frame is rotated by an angle θ, the resulting
diagram vectors will each be rotated by 2θ, and the tip-to-tail figure will
just be a rotation of the original figure.

Next, observe that the additive inverse −xi of a vector xi in an R2 frame
has exactly the same diagram vector as xi , since 2(θ + π) = 2θ + 2π.
Therefore, the tip-to-tail diagram is completely unchanged when some of
the frame vectors are replaced with their additive inverses.

With the definition of PRR-equivalence at hand, we can now classify all of
the unit tight frames for R2 which have exactly three vectors. Since the
only possible tip-to-tail diagram of three unit vectors which sum to zero
forms an equilateral triangle, every tight frame must have this diagram.
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Equivalence of Frames

Therefore, there is only one PRR-equivalence class of unit tight frames for
R2 with three vectors, and that equivalence class can be represented with
the frame given in Example 8.

The diagram vectors must be equally spaced at angles of 2π
3 when in

standard position so that they form an equilateral triangle when placed
tip-to-tail.

Suppose the angles of {x̃i}3
i=1 are 0◦, 120◦, 240◦, then the angles of

{xi}3
i=1 are 0◦, 60◦, 120◦ respectively. This sequence {x1, x2, x3} does not

have any orthonormal basis of R2.
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Unit Tight Frames with Four Vectors

The diagram vectors also allow us to characterize the unit tight frames for
R2 having exactly four vectors. The tip-to-tail diagram of such a frame
would be a quadrilateral with equal sides (a rhombus), which must
necessarily be a parallelogram as well. In other words, the diagram consists
of two pairs of vectors which are additive inverses of each other. This
implies that the original frame must contain two pairs of orthonormal
vectors.

The diagram for a 4-vector unit tight frame for R2 must be a
parallelogram, so the original frame must have two pairs of orthogonal

vectors.
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Unit Tight Frames with Four Vectors

This discussion leads to the following proposition.

Proposition 37.

Every unit tight frame for R2 having exactly four vectors must be the
union of two orthonormal bases for R2.

From this proposition, the set of all nonPRR-equivalent unit tight frames
with four vectors can be characterized by the angle between nonorthogonal
vectors.

In other words, there is a one-parameter family of unit tight frames with
four vectors in R2, where the parameter is the angle between two
nonorthogonal vectors.
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Unit Tight Frames with Four Vectors

Proposition 38.

Given any θ, 0 ≤ θ < π
2 , there exists a unit tight frame Fθ with four

vectors for R2. If θ1 6= θ2, then Fθ1 is not PRR-equivalent to Fθ2 .

The angle θ characterizes all the nonPRR-equivalent unit tight frames for
R2 with four vectors.
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Unit Tight Frames with Four Vectors

Proposition 39.

Given k ≥ 3, the sequence F =

{[
cos 2πj

k

sin 2πj
k

]}k−1

j=0

is a tight frame for R2.

Another property we could examine is whether a tight frame for R2 can be
decomposed into two other tight frames. For example, we showed above
that a unit tight frame with four vectors for R2 is always a union of two
orthonormal bases, but clearly a unit tight frame with three vectors does
not contain enough vectors to be decomposed into two spanning sets for
R2.

Proposition 40.

(i) For every k ≥ 2, there exists a unit tight frame for R2 having k
vectors.

(ii) For k 6= 4, there exists a unit tight frame for R2 which is not the
union of two or more existing tight frames for R2.
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Notion of diagram vectors was extended to Rn and Cn.

Any vector f in R2 can be written as f =

[
f (1)
f (2)

]
. The associated diagram

vector f̃ is defined as f̃ =

[
f 2(1)− f 2(2)

2f (1)f (2)

]
. Diagram vectors are used in

the following characterization of tight frames.

Theorem 41.

Let {fi}i∈I be a sequence of vectors in R2, not all of which are zero. Then
{fi}i∈I is a tight frame if and only if

∑
i∈I f̃i = 0.

The diagram vector of a vector in R2 belongs to R2. The diagram vectors
of a tight frame in R2 can be placed tip-to-tail to demonstrate that they
sum to zero.

The notion of diagram vectors was extended to Rn and Cn.
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Notion of diagram vectors was extended to Rn and Cn.

Definition 42.

For any vector f =

f (1)
...

f (n)

 ∈ Rn, we define the diagram vector of f ,

denoted as f̃ , by

f̃ =
1√
n − 1

[
(f 2(i)− f 2(j))i<j

(
√

2nf (i)f (j))i<j

]
∈ Rn(n−1),

where the difference of squares f 2(i)− f 2(j) and the product f (i)f (j)
occur exactly once for i < j , i = 1, . . . , n − 1.
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Notion of diagram vectors was extended to Rn and Cn.

Definition 43.

For any vector f ∈ Cn, we define the diagram vector of f , denoted as f̃ , by

f̃ =
1√
n − 1

(|f (i)|2 − |f (j)|2)i<j

(
√
nf (i)f (j))i<j

(
√
nf (i)f (j))i<j

 ∈ C3n(n−1)/2,

where the difference of the form |f (i)|2 − |f (j)|2 occurs exactly once for
i < j , i = 1, . . . , n− 1, and the product of the form f (i)f (j) occurs exactly
once for i 6= j .
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Notion of diagram vectors was extended to Rn and Cn.

Using these definitions, Theorem 41 was extended to Hn (Hilbert space of
dimension n).

Theorem 44.

Let {fi}i∈I be a sequence of vectors in Hn, not all of which are zero. Then
{fi}i∈I is a tight frame if and only if

∑
i∈I f̃i = 0. Moreover, for any

f , g ∈ Hn we have (n − 1)(f̃ · g̃) = n|(f · g)|2 − ‖f ‖2‖g‖2.

From the above Theorem, it is immediate that if ‖f ‖ = 1 then ‖f̃ ‖ = 1.
Suppose Sk := {f ∈ Rk+1 : ‖f ‖ = 1} is the unit sphere in Rk+1. We can
define the diagram operator D : Sn−1 → Sn(n−1)−1 and note that D is not
injective since f and −f have the same diagram vectors. It can be shown
that D is surjective if and only if n = 2.
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Fundamental Inequality in R2

Proposition 45 (Fundamental Inequality in R2).

Let {ai}ki=1 ⊂ R+, with k ≥ 2 and a1 ≥ a2 ≥ · · · ≥ ak > 0. Then there
exists a tight frame {xi}ki=1 for R2 such that ‖xi‖2 = ai , i = 1, 2, . . . , k if
and only if

a1 ≤
k∑

i=2

ai .
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Exercises

Exercises 46.

1. Prove that for every k ≥ 2, there exists a unit tight frame for R2

having k vectors.

2. Prove that for k 6= 4, there exists a unit tight frame for R2 which is
not the union of two or more existing tight frames for R2.

3. Describe the set of all unit tight frames with exactly five vectors, up
to PRR-equivalence.

4. Given a finite set of k unit vectors in R2, with k ≥ 3, use diagram
vectors to show that they can be scaled by positive constants to form
a tight frame so long as their corresponding “double-angle vectors”[

cos 2θi
sin 2θi

]
are not all contained in any open half-plane of R2.
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